Before the featured portal process ceased in 2017, this had been designated as a featured portal.
Page semi-protected

Portal:Mathematics

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Mathematics Portal

Mathematics is the study of numbers, quantity, space, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.

There are approximately 31,444 mathematics articles in Wikipedia.

Selected article


Criticalline.png
The real part (red) and imaginary part (blue) of the critical line Re(s) = 1/2 of the Riemann zeta-function.
Image credit: User:Army1987

The Riemann hypothesis, first formulated by Bernhard Riemann in 1859, is one of the most famous unsolved problems. It has been an open question for well over a century, despite attracting concentrated efforts from many outstanding mathematicians.

The Riemann hypothesis is a conjecture about the distribution of the zeros of the Riemann zeta-function ζ(s). The Riemann zeta-function is defined for all complex numbers s ≠ 1. It has zeros at the negative even integers (i.e. at s=-2, s=-4, s=-6, ...). These are called the trivial zeros. The Riemann hypothesis is concerned with the non-trivial zeros, and states that:

The real part of any non-trivial zero of the Riemann zeta function is ½

Thus the non-trivial zeros should lie on the so-called critical line ½ + it with t a real number and i the imaginary unit. The Riemann zeta-function along the critical line is sometimes studied in terms of the Z-function, whose real zeros correspond to the zeros of the zeta-function on the critical line.

The Riemann hypothesis is one of the most important open problems in contemporary mathematics; a $1,000,000 prize has been offered by the Clay Mathematics Institute for a proof. Most mathematicians believe the Riemann hypothesis to be true. (J. E. Littlewood and Atle Selberg have been reported as skeptical. Selberg's skepticism, if any, waned, from his young days. In a 1989 paper, he suggested that an analogue should hold for a much wider class of functions, the Selberg class.)

View all selected articles Read More...

Selected picture

black-and-white colored truncated icosahedron beside a classic 1970s soccer ball for comparison

Here a polyhedron called a truncated icosahedron (left) is compared to the classic Adidas Telstar–style football (or soccer ball). The familiar 32-panel ball design, consisting of 12 black pentagonal and 20 white hexagonal panels, was first introduced by the Danish manufacturer Select Sport, based loosely on the geodesic dome designs of Buckminster Fuller; it was popularized by the selection of the Adidas Telstar as the official match ball of the 1970 FIFA World Cup. The polyhedron is also the shape of the Buckminsterfullerene (or "Buckyball") carbon molecule initially predicted theoretically in the late 1960s and first generated in the laboratory in 1985. Like all polyhedra, the vertices (corner points), edges (lines between these points), and faces (flat surfaces bounded by the lines) of this solid obey the Euler characteristic, VE + F = 2 (here, 60 − 90 + 32 = 2). The icosahedron from which this solid is obtained by truncating (or "cutting off") each vertex (replacing each by a pentagonal face), has 12 vertices, 30 edges, and 20 faces; it is one of the five regular solids, or Platonic solids—named after Plato, whose school of philosophy in ancient Greece held that the classical elements (earth, water, air, fire, and a fifth element called aether) were associated with these regular solids. The fifth element was known in Latin as the "quintessence", a hypothesized uncorruptible material (in contrast to the other four terrestrial elements) filling the heavens and responsible for celestial phenomena. That such idealized mathematical shapes as polyhedra actually occur in nature (e.g., in crystals and other molecular structures) was discovered by naturalists and physicists in the 19th and 20th centuries, largely independently of the ancient philosophies.

Did you know...

Did you know...

                         

Showing 7 items out of 71

WikiProjects

The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

WikiProjects

Project pages

Essays

Subprojects

Related projects

Things you can do

Categories


Topics in mathematics

General Foundations Number theory Discrete mathematics
Nuvola apps bookcase.svg
Set theory icon.svg
Nuvola apps kwin4.png
Nuvola apps atlantik.png


Algebra Analysis Geometry and topology Applied mathematics
Arithmetic symbols.svg
Source
Nuvola apps kpovmodeler.svg
Gcalctool.svg

Index of mathematics articles

ARTICLE INDEX: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9)
MATHEMATICIANS: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Related portals

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database